Remodeling of synaptic structure in sensory cortical areas in vivo.

نویسندگان

  • Ania K Majewska
  • Jessica R Newton
  • Mriganka Sur
چکیده

Although plastic changes are known to occur in developing and adult cortex, it remains unclear whether these changes require remodeling of cortical circuitry whereby synapses are formed and eliminated or whether they rely on changes in the strength of existing synapses. To determine the structural stability of dendritic spines and axon terminals in vivo, we chose two approaches. First, we performed time-lapse two-photon imaging of dendritic spine motility of layer 5 pyramidal neurons in juvenile [postnatal day 28 (P28)] mice in visual, auditory, and somatosensory cortices. We found that there were differences in basal rates of dendritic spine motility of the same neuron type in different cortices, with visual cortex exhibiting the least structural dynamics. Rewiring visual input into the auditory cortex at birth, however, failed to alter dendritic spine motility, suggesting that structural plasticity rates might be intrinsic to the cortical region. Second, we investigated the persistence of both the presynaptic (axon terminals) and postsynaptic (dendritic spine) structures in young adult mice (P40-P61), using chronic in vivo two-photon imaging in different sensory areas. Both terminals and spines were relatively stable, with >80% persisting over a 3 week period in all sensory regions. Axon terminals were more stable than dendritic spines. These data suggest that changes in network function during adult learning and memory might occur through changes in the strength and efficacy of existing synapses as well as some remodeling of connectivity through the loss and gain of synapses.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The emotive brain, the noradrenergic system, and cognition

Motivation and attention can have a profound influence on perception, learning and memory. Neuromodulatory systems, especially the noradrenergic (NE) system, co-vary with psychological states to modulate cortical arousal, influence sensory processing and promote synaptic plasticity. There is even some suggestion that the NE system might facilitate functional recovery after brain damage. Post-sy...

متن کامل

The emotive brain, the noradrenergic system, and cognition

Motivation and attention can have a profound influence on perception, learning and memory. Neuromodulatory systems, especially the noradrenergic (NE) system, co-vary with psychological states to modulate cortical arousal, influence sensory processing and promote synaptic plasticity. There is even some suggestion that the NE system might facilitate functional recovery after brain damage. Post-sy...

متن کامل

Effects of visual deprivation on synaptic plasticity of visual cortex

  TBS (Theta Burst Stimulation) and PBs (Primed Bursts) are among effective tetanic stimulations for induction of LTP in hippocampus. Recent studies have indicated that TBS is effective in LTP induction in layer III synapses of neocortex, only if applied to layer IV. However, the possibility of neocortical LTP induction using PBs, has not yet been investigated. Sensory deprivation greatly influ...

متن کامل

In vivo Large-Scale Cortical Mapping Using Channelrhodopsin-2 Stimulation in Transgenic Mice Reveals Asymmetric and Reciprocal Relationships between Cortical Areas

We have mapped intracortical activity in vivo independent of sensory input using arbitrary point channelrhodopsin-2 (ChR2) stimulation and regional voltage sensitive dye imaging in B6.Cg-Tg (Thy1-COP4/EYFP)18Gfng/J transgenic mice. Photostimulation of subsets of deep layer pyramidal neurons within forelimb, barrel, or visual primary sensory cortex led to downstream cortical maps that were depen...

متن کامل

Imaging the Impact of Cortical Microcirculation on Synaptic Structure and Sensory-Evoked Hemodynamic Responses In Vivo

In vivo two-photon microscopy was used to image in real time dendrites and their spines in a mouse photothrombotic stroke model that reduced somatosensory cortex blood flow in discrete regions of cortical functional maps. This approach allowed us to define relationships between blood flow, cortical structure, and function on scales not previously achieved with macroscopic imaging techniques. Ac...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 26 11  شماره 

صفحات  -

تاریخ انتشار 2006